Generic regression - House Price Prediction

Generic regression - House Price Prediction


Pipeline for solving classical regression problem - House Price estimation considering Lot size in square feet, Linear feet of street connected to the property, Roof material and style, Overall material and finish quality, Year of Building, Number of bedrooms, etc. This pipeline includes data processing, regression model training, and further application.

Problem Statement

Based on the house characteristics, assess its more likely sale price.


House Pricing public dataset with 1460 records of houses and their prices accompanied with various features:

Data Description

  • SalePrice: the property's sale price in dollars. This is the target variable that you're trying to predict.
  • MSSubClass: The building class
  • MSZoning: The general zoning classification
  • LotFrontage: Linear feet of street connected to property
  • LotArea: Lot size in square feet
  • Street: Type of road access
  • Alley: Type of alley access
  • LotShape: General shape of property
  • LandContour: Flatness of the property
  • Utilities: Type of utilities available
  • LotConfig: Lot configuration
  • LandSlope: Slope of property
  • Neighborhood: Physical locations within Ames city limits
  • Condition1: Proximity to main road or railroad
  • Condition2: Proximity to main road or railroad (if a second is present)
  • BldgType: Type of dwelling
  • HouseStyle: Style of dwelling
  • OverallQual: Overall material and finish quality
  • OverallCond: Overall condition rating
  • YearBuilt: Original construction date
  • YearRemodAdd: Remodel date
  • RoofStyle: Type of roof
  • RoofMatl: Roof material
  • Exterior1st: Exterior covering on house
  • Exterior2nd: Exterior covering on house (if more than one material)
  • MasVnrType: Masonry veneer type
  • MasVnrArea: Masonry veneer area in square feet
  • ExterQual: Exterior material quality
  • ExterCond: Present condition of the material on the exterior
  • Foundation: Type of foundation
  • BsmtQual: Height of the basement
  • BsmtCond: General condition of the basement
  • BsmtExposure: Walkout or garden level basement walls
  • BsmtFinType1: Quality of basement finished area
  • BsmtFinSF1: Type 1 finished square feet
  • BsmtFinType2: Quality of second finished area (if present)
  • BsmtFinSF2: Type 2 finished square feet
  • BsmtUnfSF: Unfinished square feet of basement area
  • TotalBsmtSF: Total square feet of basement area
  • Heating: Type of heating
  • HeatingQC: Heating quality and condition
  • CentralAir: Central air conditioning
  • Electrical: Electrical system
  • 1stFlrSF: First Floor square feet
  • 2ndFlrSF: Second floor square feet
  • LowQualFinSF: Low quality finished square feet (all floors)
  • GrLivArea: Above grade (ground) living area square feet
  • BsmtFullBath: Basement full bathrooms
  • BsmtHalfBath: Basement half bathrooms
  • FullBath: Full bathrooms above grade
  • HalfBath: Half baths above grade
  • Bedroom: Number of bedrooms above basement level
  • Kitchen: Number of kitchens
  • KitchenQual: Kitchen quality
  • TotRmsAbvGrd: Total rooms above grade (does not include bathrooms)
  • Functional: Home functionality rating
  • Fireplaces: Number of fireplaces
  • FireplaceQu: Fireplace quality
  • GarageType: Garage location
  • GarageYrBlt: Year garage was built
  • GarageFinish: Interior finish of the garage
  • GarageCars: Size of garage in car capacity
  • GarageArea: Size of garage in square feet
  • GarageQual: Garage quality
  • GarageCond: Garage condition
  • PavedDrive: Paved driveway
  • WoodDeckSF: Wood deck area in square feet
  • OpenPorchSF: Open porch area in square feet
  • EnclosedPorch: Enclosed porch area in square feet
  • 3SsnPorch: Three season porch area in square feet
  • ScreenPorch: Screen porch area in square feet
  • PoolArea: Pool area in square feet
  • PoolQC: Pool quality
  • Fence: Fence quality
  • MiscFeature: Miscellaneous feature not covered in other categories
  • MiscVal: $Value of miscellaneous feature
  • MoSold: Month Sold
  • YrSold: Year Sold
  • SaleType: Type of sale
  • SaleCondition: Condition of sale

Target Variable

  • SalePrice

Datrics Pipeline

Pipeline Shema

notion image

Pipeline Scenario

  1. Data Load
  1. Select valuable attributes
    1. notion image
  1. Categorical Features binarization
    1. notion image
  1. Missing Values Treatmment
    1. notion image
  1. Prepare samplings for model training and verification
  1. Model Train and Validation

Pipeline results

Model performance

The model provides a good fitting of the dependent variable - coefficient of determination is 0.86% on the test set. To see the final results, press "Model performance" button on the Predict brick menu.
notion image

Feature Importance

The predictive importance of the input features for the assessment target variable can be reached via Train Brick→ Model Performance dashboard. The most important features are Overall Quality and Above grade (ground) living area square feet.
notion image

Prediction Results

Model prediction results can be reviewed and analysed in Predict→Output dashboard.
notion image

Model Save and Deployment

Copy of CopyModels Save/Download
Copy of AutoModel APIs